这里面的算子设计和模型构建都需要有领域知识的支撑。算子的构建、特征的提取以及模型的建立都影响着终的匹配结果,需要具有深厚的知识和经验。这个过程往往是手工建模完成的,各个模型及参数的设置都比较耗时,具有一定的主观性。
同时,特征工程的适配性较差。比如,各地区人员脸部特征不同,会导致已经调整好的算法在落地时,需要手动多次调整参数,过程耗时、耗力,严重阻碍了算法的大规模部署。
虽然,从表面上看,基于人脸关键特征的识别方法有诸多缺点,且效率较低。但算法能够从人类的先验知识出发,直观而朴素,一定程度上推动了人脸识别技术的发展和普及,为后续更智能的算法奠定了基础。
实现过程
以上简单描述了人脸关键特征的计算方法。在实际应用中,需要借助于统计分析的技术,从大量的人脸中找到对应的特征,并通过训练出不同的分类器,如嘴巴分类器、眼睛分类器等,从而实现人脸及关键部位的检测。
在进行比对时,需要对包含脸部的所有可能检测窗口进行穷举搜索,得到关键部位信息,并进行存储或比对,这个过程相对比较耗时。在比对过程中,可以使用各个部位进行相似性比对,并进行结果合并;或者直接对包含各个部件的全局特征进行比对,直接输出比对结果。
人脸识别优势
人脸识别是基于人的脸部特征信息进行身份识别的一种生物识别技术。每个人的面孔都由额头、眉毛、眼睛、鼻子、嘴巴、双颊等部位组合而成,它们之间的大致位置关系也是固定的。然而,人脸具有性,这个世界上找不出两张完全相同的人脸,人们通常能够根据不同面孔之间的细微差异将不同人区分开来。
人脸具有相似性和易变性,不同环境、光线、角度、年龄,智能人脸识别系统,均会对人脸的成像产生变化,因此,人脸识别是生物识别领域困难的研究领域之一。
人脸识别技术具有非强制性、非接触性、并发性等几大优势。
滁州智能人脸识别系统-合肥进军|方便快捷(图)由合肥进军智能系统有限公司提供。合肥进军智能系统有限公司实力不俗,信誉可靠,在安徽 合肥 的门禁机等行业积累了大批忠诚的客户。进军带着精益求精的工作态度和不断的完善创新理念和您携手步入**,共创美好未来!